A light-stimulated neuromorphic device based on graphene hybrid phototransistor
نویسندگان
چکیده
Neuromorphic chip refers to an unconventional computing architecture that is modelled on biological brains. It is ideally suited for processing sensory data for intelligence computing, decision-making or context cognition. Despite rapid development, conventional artificial synapses exhibit poor connection flexibility and require separate data acquisition circuitry, resulting in limited functionalities and significant hardware redundancy. Here we report a novel light-stimulated artificial synapse based on a graphene-nanotube hybrid phototransistor that can directly convert optical stimuli into a"neural image"for further neuronal analysis. Our optically-driven synapses involve multiple steps of plasticity mechanisms and importantly exhibit flexible tuning of both short- and long-term plasticity. Furthermore, our neuromorphic phototransistor can take multiple pre-synaptic light stimuli via wavelength-division multiplexing and allows advanced optical processing through charge-trap-mediated optical coupling. The capability of complex neuromorphic functionalities in a simple silicon-compatible device paves the way for novel neuromorphic computing architectures involving photonics.
منابع مشابه
Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor
The realization of low-cost photodetectors with high sensitivity, high quantum efficiency, high gain and fast photoresponse in the visible and short-wave infrared remains one of the challenges in optoelectronics. Two classes of photodetectors that have been developed are photodiodes and phototransistors, each of them with specific drawbacks. Here we merge both types into a hybrid photodetector ...
متن کاملGraphene photodetectors with ultra-broadband and high responsivity at room temperature.
The ability to detect light over a broad spectral range is central to several technological applications in imaging, sensing, spectroscopy and communication. Graphene is a promising candidate material for ultra-broadband photodetectors, as its absorption spectrum covers the entire ultraviolet to far-infrared range. However, the responsivity of graphene-based photodetectors has so far been limit...
متن کاملFlexible Metal Oxide/Graphene Oxide Hybrid Neuromorphic Devices on Flexible Conducting Graphene Substrates
Flexible metal oxide/graphene oxide hybrid multi-gate neuron transistors were fabricated on flexible graphene substrates. Dendritic integrations in both spatial and temporal modes were successfully emulated, and spatiotemporal correlated logics were obtained. A proof-of-principle visual system model for emulating lobula giant motion detector neuron was investigated. Our results are of great int...
متن کاملOrganic-Inorganic Heterointerfaces for Ultrasensitive Detection of Ultraviolet Light.
The performance of graphene field-effect transistors is limited by the drastically reduced carrier mobility of graphene on silicon dioxide (SiO2) substrates. Here we demonstrate an ultrasensitive ultraviolet (UV) phototransistor featuring an organic self-assembled monolayer (SAM) sandwiched between an inorganic ZnO quantum dots decorated graphene channel and a conventional SiO2/Si substrate. Re...
متن کاملUltrafast zero balance of the oscillator-strength sum rule in graphene
Oscillator-strength sum rule in light-induced transitions is one general form of quantum-mechanical identities. Although this sum rule is well established in equilibrium photo-physics, an experimental corroboration for the validation of the sum rule in a nonequilibrium regime has been a long-standing unexplored question. The simple band structure of graphene is an ideal system for investigating...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1609.02554 شماره
صفحات -
تاریخ انتشار 2016